Как производят спирт в промышленных масштабах. Влияние основных параметров на скорость процесса. Свойства сырья и вспомогательных материалов

Этиловый спирт активно используется во многих народнохозяйственных сферах: пищевой, химико-фармацевтической, парфюмерной, микробиологической, где он представляет собой первооснову многих видов продукции. Требования к качеству спирта значительно разнятся, что обусловлено спецификой его использования, а также характеристиками и режимами технологических операций в процессе производства.

Наиболее популярны два метода его получения: микробиологический и химический. Первый предусматривает процедуру сбраживания сахаров дрожжами-сахаромицетами. Эта технология широко используется в случае мини производства спирта. По второму методу его получают из этилена путем каталитической гидратации - данная технология тесно связана с применением биологических ферментов-катализаторов. В результате химического синтеза осуществляется производство технического спирта, а при биологическом - пищевого и врачебного.

Главное сырье для производства спирта - растительная масса с высоким содержанием крахмала, сахара и клетчатки. В соответствии с этим сырье делят на 3 основных класса: крахмалсодержащее (зерновые культуры, картофель); сахаросодержащее (свекловица, меласса, виноград, фрукты) и клетковиносодержащее (ксилема, солома, отходы сульфит-целюлозной отрасли). Самым популярным и экономичным видом является картофель. Входящий в его состав крахмал обладает быстрой развариваемостью, клейстеризацией и осахариванием. На спиртовую переработку идет любое зерно, в т. ч. и негодное для пищевого и кормового направления.

Технологический процесс производства спирта

Производство этилового спирта состоит из обязательных технологичных операций, которые условно можно объединить в три этапа: предварительный (мойка, очищение сырья, подготовка солодового экстракта и культур микроорганизмов); основной (разварка сырьевой массы, сахарификация - переход крахмала в сахар, сбраживание, дистилляция браги и сбор спирта-сырца); заключительный - ректификационная очистка.

При производстве спирта из зерна сырьевая масса должна отличаться высоким содержанием крахмала и влажностью менее 17 %. Подготовительный этап технологии состоит в предварительной очистке сырья от механических, органических и сорных примесей. Для этого используют различное технологическое оборудование: воздушно-ситовые, магнитные сепараторы, триеры.

Процесс разваривания состоит в том, что сырье для производства этилового спирта обрабатывают парообразной фазой раствора под давлением 0,5 МПа с целью размягчения клеточной структуры, набухания крахмала, извлечения и преобразования его в растворимое состояние для ускорения этапа сахарификации ферментами. При этом осуществляется усиленный рост объема сахаров вследствие распада крахмала.

На сегодняшний момент варка крахмалсодержащего материала осуществляется 3-мя методами: периодичным, полунепрерывным и постоянным. Наиболее распространен последний вариант с использованием 2-х схем. Согласно 1-й операция проходит при невысокой температуре (около 140°С), но продолжительное время (1 час). По 2-й - температура варки около 170°С на протяжении 3 мин. При таком виде варки сырьевая среда сплошной массой передвигается через выпаривальный аппарат для производства спирта. С целью осуществления однородности потока массу дробят.

Следующей операцией технологии производства пищевого спирта является остывание подготовленной среды и её сахарификация в результате взаимодействия с солодовым раствором или ферментами при 58°С. Традиционно сахарификация проходит непрерывным способом с использованием вакуумного охлаждения. Остывание в вакуум-аппарате предупреждает тепловое инактивирование катализаторов-ферментов сахарифицирующих веществ. Принцип его состоит в уменьшении давления, что обуславливает резкое остывание разваренной массы из-за расхода тепловой энергии на испарение влаги.

Непрерывный тип сахарификации осуществляют по 1- или 2-поточному методу. В первом случае в осахариватель (цилиндрообразный агрегат с конусовидным основанием и мешателем) поступает разваренная смесь и осахаривающие вещества, которые выдерживают на протяжении четверти часа. При 2-поточном методе разваренную массу делят на 2 одинаковых потока и направляют в осахариватели. В 1-й осахариватель идет 66% осахаривающих веществ, во 2-й - наполовину осахаренное сусло. Их остужают и направляют на сбраживание в 1-й и 2-й основные агрегаты бродильной батареи. На выходе сусло имеет около 17% сухого вещества, в т. ч. 15% сбраживаемых сахаров.

Бродильные процессы в сусле происходят за счет активизации дрожжевых ферментов, при этом мальтоза распадается до глюкозы и перебраживается в спиртовую фазу и углекислоту. В ходе этого процесса просматриваются 3 этапа: сбраживание, основное брожение и конечное дображивание. В начальном моменте наблюдается активизация жизнедеятельности дрожжей. Последующий отличается стремительным сбраживанием сахарной фракции и сильным образованием углекислоты. В завершающем этапе происходит остаточное дображивание сахаров, которые образуются при досахаривании углеводов сусла.

Процесс брожения бывает периодичным, циклическим и поточным. Максимальная эффективность достигается при использовании последнего, который осуществляют на оборудовании из последовательно соединенных дрожжанок, сбраживателя и 10 бродильных агрегатов. Дрожжанки и сбраживатель применяют для подготовки требуемого объема производственных дрожжей. В ходе работы дрожжанки наполняются суслом, проводится его пастеризация при 80°С на протяжении получаса, далее его остужают до 30°С, кислотность регулируют до уровня 3,6-3,8 рН серной кислотой и, наконец, вносят из другой дрожжанки дрожжи для засева (30% от объема). Дрожжи размножаются до уровня сухого вещества в сусле 5%. После этого 3/4 объема дрожжей переходит во сбраживатель, куда параллельно заправляется остывшее сусло, всю массу подкисляют до нормативной кислотности. Последняя четверть дрожжей направляется в другой агрегат для размножения.

Оборудование, необходимое для производства

Среди оборудования для производства спирта следует выделить бродильные агрегаты цилиндрического типа, имеющие герметичный люк для предотвращения испарения спирта и выделения углекислоты в помещение завода. В общей сложности этап брожения продолжается 60 ч. На заводах по производству спирта, выпускающих исключительно спирт, введение пробирочной культуры дрожжей производится 1 раз/мес., а полностью меняют их в бродильной батарее еженедельно. На заводах, оснащенных вспомогательными цехами хлебобулочных дрожжей, получаемых из бражки, число замен возрастает до 2-3 раз в неделю.

Затем зрелая бражка направляется на дистилляцию. Этот этап технологии производства спирта является обязательным в связи со сложным компонентным составом бражки: помимо воды и спирта сюда входят сахара, минеральные элементы, различные летучие компоненты в зависимости от типа и качественных особенностей сырья, параметров переработки.

В ходе дистилляции осуществляется расщепление смеси - при кипячении более летучие элементы преобразуются в парообразное состояние. В спиртово-водном комплексе летучесть спиртовых паров независимо от температуры существенно превышает этот показатель у водяного пара, из-за чего количество спирта в спиртово-водном комплексе ниже, чем в парах.

На современных заводах по производству спирта предусматривается обязательное очищение спирта-сырца от примесей. Для этого используют специальные ректификационные аппараты постоянного действия, обуславливающие разделение смеси из нескольких элементов, температура кипения которых разнится. Очищение спирта способом дистиллирования предусматривает разность между коэффициентами ректификации (отношение объема данного компонента в парообразной фазе к объему в жидкой).

Данные коэффициенты у разнообразных примесей колеблются и тесно зависят от концентрации спирта. Для анализа необходимости очищения спирта от примесей следует сопоставить их коэффициенты испарения. В случае, когда коэффициент равен одному, дистилляция не эффективна, поскольку дистиллят в конечном результате не изменится. Когда коэффициент превышает единицу, то в объем примесей в дистилляте превышает этот показатель в начальной смеси. Когда коэффициент ниже единицы, то уровень примесей, содержащихся в дистилляте, ниже, чем первоначально.

Очищение спирта происходит в большей степени на ректификационных аппаратах непрерывного действия, где он ректификуется согласно уровням коэффициентов испарения. Данный вид оборудования применяется на таких заводах, в которых основополагающей сырьевой продукцией выступает спирт-сырец. На предприятиях ректификованный спирт производят напрямую из бражистой фазы на брагоректификационных аппаратах косвенного действия, которые включают 3 колонны: бражническую, эпюрационную и ректификационную. В 1-й из бражки получают этиловый спирт и летучие вещества, во 2-й - убирают головные примеси, в 3-й непосредственно собирают ректификованный спирт. Кроме основных аппаратов в составе присутствуют вспомогательные аппараты - сивушный и заключительный (для контрольного очищения спирта).

Изготовление спиртосодержащей продукции производится при наличии у предприятия соответственных лицензий на производство спирта. Строгий контроль за спиртопроизводством сопровождается ужесточением узкоспециального законодательства, ростом затрат на , регламентированием норм по цельной переработке отходов.

По существу и спирты брожения представляют собой продукты синтеза, но природного. Ведь картофель, различные злаки и древесина - все они получаются в результате фотохимического синтеза в растениях из простых. «веществ, находящихся в воздухе и почве. Этот процесс происходит кругом нас в природе в гигантских размерах, несравнимых с масштабами обычных производств. В зелёных частях растений, под влиянием хлорофилла-катализатора, вырабатываемого самими растениями, непрерывно синтезируется крахмал, сахара и другие вещества из угольного ангидрида и воды воздуха. Почти вся пища человека состоит из продуктов этого синтеза.

Следовательно, когда мы упомянули о синтетическом спирте, мы имели в виду искусственный химический синтез.

Синтетический этиловый спирт - это спирт из газов нефтепереработки. Нефть является третьим, важнейшим видом сырья для производства спирта. При нагревании нефти (это осуществляется на больших нефтеперегонных заводах) из неё последовательно выделяется ряд фракций - бензин, керосин, лигроин и т. д. Эти фракции - смесь лёгких углеводородов. В остатке получается тяжёлый мазут.

В прошлом столетии главным продуктом перегонки нефти служил керосин, использовавшийся для освещения. Любопытно, что такой ценнейший нефтепродукт, как бензин, в то время считался отходом и просто сжигался. В настоящее время бензин - главный вид моторного топлива. Вначале его выделяли из нефти только так называемой прямой гонкой, т. е. перегонкой с целью получения лёгких, светлых фракций. Однако со временем, с целью увеличения выработки бензина, который настоятельно требовали быстро развивавшиеся автомобильная промышленность и авиация, основанные на применении двигателей внутреннего сгорания, нефть стали подвергать специальной переработке. Эта переработка, связанная с применением высоких температур и давлений, называется пиролизом или крекингом, в зависимости от условий проведения процесса. Сущность таких процессов будет разобрана ниже, в главе о получении бутадиена из нефти.

При пиролизе и крекинге нефти за счёт расщепления сложных молекул углеводородов, образующих нефть, получаются в большом количестве газообразные углеводороды как предельные - метан СН4, этан С2Н6, пропан С3Н8, так и непредельные - этилен С2Н4, пропилен С3Н6 и др.

Газы нефтепереработки представляют ценнейшее химическое сырьё. Однако до последнего времени их использовали мало. Чаще всего эти газы просто сжигали, устраивая «факел» вблизи нефтеперегонного завода, или выбрасывали без всякой пользы в атмосферу. Лишь в последние годы найдены способы улавливания газов нефтепереработки, их разделения и разнообразной химической переработки.

Одним из наиболее ценных газов нефтепереработки является лёгкий горючий газ этилен СH 2 =СH 2 , который содержится в газах пиролиза до 21% по весу. Он имеет двойную связь. Это - простейшее непредельное соединение. Благодаря двойной связи этилен легко вступаете соединения с другими веществами и может полимеризоваться, давая твёрдый политэн. Этилен очень удобен для синтеза и применяется в промышленности в больших количествах для получения различных веществ.

Свойства этилена прекрасно знал. Александр Михайлович Бутлеров. В 1873 г. он произвёл интересный и важный по своим практическим последствиям опыт. Бутлеров пропускал газообразный этилен через серную кислоту. Этилен, взаимодействуя с кислотой, давал этилсерную кислоту:

Обрабатывая получившийся полупродукт водой (гидролизуя его, как сказал бы химик), учёный получил впервые синтетический этиловый спирт:

Так восемьдесят лет назад в Петербурге было сделано замечательное открытие, честь которого принадлежит русскому химику. Было впервые доказано, что столь важный для народного хозяйства продукт, как спирт, можно получать без брожения, чисто химическим путём. В наше время, когда крекинг и пиролиз нефти получили во многих странах большое развитие, реакция Бутлерова осуществлена в промышленном масштабе. Из этилена газов нефтепереработки получают сотни тысяч тонн спирта. Это - спирт из нефти. Для получения его не требуется затраты пищевого сырья и поэтому производство такого спирта имеет неограниченные перспективы развития.

Мысль учёных не остановилась на этом открытии. Производство спирта из этилена с помощью серной кислоты («сернокислотный метод» получения спирта) идёт в две стадии. Это двухступенчатый процесс, а химики всегда стремятся сократить число стадий: чем их меньше - тем больше выход целевого продукта. Реакции, которые мы только что прочитали, означают лишь главные направления процесса, в действительности образуется ряд побочных продуктов. Этилен заставляют взаимодействовать с высококонцентрированной (95-98%) серной кислотой при температуре 60-80° и небольшом избыточном давлении газа. Для получения 1 г 100-процентного этилового спирта нужно затратить около 0,7 т этилена Как видно из уравнения реакции, при получении спирта из этилена через этилсерную кислоту вновь образуется серная кислота, но уже разбавленная (40-60%), так как для гидролиза в процесс вводится вода.

Большой расход серной кислоты и образование слабой кислоты являются недостатками сернокислотного метода получения этилового спирта.

Очень заманчива мысль о получении этилового спирта прямо непосредственно из этилена, в одну стадию. Ведь на бумаге это самая простая реакция:

В действительности получить спирт в одну стадию не так-то просто. Химики призывают здесь на помощь всех своих верных помощников: катализатор, большое давление, высокую температуру. Лишь в этом случае этилен реагирует с водой с хорошим выходом.

В самые последние годы такой процесс осуществлён в производственных условиях. Он носит название прямой гидратации этилена, так как суть его состоит в непосредственном присоединении воды к этилену. Как и гидролиз этилсерной кислоты, реакция прямой гидратации этилена обратима. Процесс может протекать, в зависимости от условий, в том или ином направлении. При определённых условиях наступает момент химического равновесия: в единицу времени образуется столько молекул этилового спирта, сколько их распадается на этилен и воду.

В процесс прямой гидратации не нужно вводить больших количеств серной кислоты. Это является крупным преимуществом для производства.

Так на заводах получают спирт из этилена.

Это также спирт из непищевого сырья.

В ближайшие годы советская промышленность синтетического каучука целиком перейдёт на потребление для производственных нужд спирта из непищевого сырья - древесины и газов нефтепереработки. Пищевое сырьё, затрачиваемое сейчас для этой цели, пойдёт по прямому назначению.

На рисунке 9 наглядно представлен расход различного сырья для получения 1 т этилового спирта. Мы ознакомились со всеми промышленными методами производства этилового спирта, принятыми в настоящее время. Пойдём дальше: посмотрим, как из спирта получают бутадиен по методу С. В. Лебедева.

Рис. 9. Такое количество картофеля, древесины или этилена необходимо для получения 1 т этилового спирта.

Этиловый спирт-сырец, поступающий со спиртовых заводов, направляется на спиртовой склад для составления «шихты», т. е. смеси, идущей на химическое разложение («контактирование»). Для составления шихты берут в строго определённом соотношении свежий спирт-сырец и оборотный, или спирт-регенерат (спирт, не разложившийся при контактировании). Эту смесь центробежный насос непрерывно подаёт на разложение в контактный цех. Образующиеся здесь контактные газы, содержащие нужный нам бутадиен, поступают в цех конденсации. В нём происходит частичная конденсация (сжижение) контактного газа. Составные части шихты, имеющие высокие температуры кипения, превращаются в жидкость, а низкокипящие, в том числе и бутадиен, кипящий при 4°,5 °С, идут дальше в виде паров. Смысл этой технологической операции понятен: отделить бутадиен от тяжёлых примесей, в первую очередь от воды и этилового (неразложившегося) спирта (рис. 10).

Рис. 10. Общая схема производства каучука из спирта по методу С. В. Лебедева.

Неконденсирующийся газ поступает на абсорбцию , т. е. поглощение жидкостью. В высоких аппаратах - скрубберах бутадиен и некоторые его примеси улавливаются стекающим вниз жидким спиртом. Насыщенный абсорбент (спирт) поступает на отгонку, на колонны, обогреваемые паром. Легко кипящий бутадиен отгоняется от абсорбента, конденсируется и в виде бутадиена-сырца поступает на отмывку , заключающуюся в том, что сопутствующий бутадиену ацетальдегид, мешающий полимеризации, отмывается водой и таким образом отделяется от бутадиена. Отмытый бутадиен-сырец подвергается ректификации (очистке путём многократной перегонки), после чего, в виде крепкого чистого бутадиена-ректификата направляется на полимеризацию - превращение в полимер. Отмывка и ректификация составляют в совокупности процесс очистки бутадиена. Полимер подвергается обработке , давая товарный натрий-бутадиеновый каучук.

Такова в самых общих чертах схема получения синтетического каучука по методу С. В. Лебедева. Мы умышленно подчеркнули слова: разложение - конденсация - абсорбция - отгонка - отмывка - ректификация - полимеризация - обработка. Именно эта цепь основных процессов и приводит на заводах к получению синтетического каучука, отправляемого затем на резиновые заводы для переработки в изделия. Совершим экскурсию по заводу синтетического каучука. Когда подходишь к такому заводу, поражает тишина: хорошо налаженные химические заводы работают почти бесшумно.

В этом отношении они сильно отличаются от механических или металлургических заводов, где большинство рабочих процессов сопровождается шумом и лязгом. Издали завод СК (так обычно в практике сокращённо называют синтетический каучук) представляет собой большое промышленное предприятие со многими зданиями и высокими аппаратами, стоящими вне зданий.

Этиловый спирт необходим. Ведь его используют в медицине и парфюмерии, в производстве взрывчатых веществ, лаков, красок и так далее. Издавна этиловый спирт получали из зерна, картофеля, патоки и прочих пищевых продуктов, содержащих крахмал или сахар. Этот сахар сбраживается с помощью дрожжей и превращается в этиловый спирт и углекислоту. Миллионы тонн зерна и картофеля превращались ежегодно в шины и галоши. Необходимость экономить эти продукты и привела к созданию промышленностью синтетического этилового спирта. Он в 2-3 раза дешевле, чем спирт пищевого происхождения, потому что дешево сырье - газы нефтеперерабатывающих заводов - и малы затраты труда (примерно в 20 раз меньше, чем при производстве спирта из картофеля). Однако технология производства синтетического этилового спирта сложна. О ней-то мы и расскажем.

Основа производства - реакция прямой гидратации этилена. Она протекает при давлении около 80 атмосфер и температуре около 300°С в присутствии катализатора - фосфорной кислоты, нанесенной на твердый носитель. Можно, однако, использовать другой способ гидратации этилена - сернокислый. В этом случае при помощи химических насосов этилен пропускают через крепкую, 98%-ную серную кислоту. Образуется этилсерная кислота. Если ее смешать с водой и подогреть, то она разрушится - образуется этиловый спирт и разбавленная водой серная кислота. Эту слабую кислоту укрепляют, то есть выпаривают из нее воду. В этом как раз и заключается слабое место сернокислотного метода. Поэтому применяют главным образом первый метод - прямой гидратации.

В чистом виде этилен не встречается. Правда, в небольшом количестве он присутствует в газах коксовых печей, но извлечь его оттуда нелегко. Поэтому в промышленности этилен получают пиролизом нефтяных углеводородов (либо газов крекинга нефти, либо попутных газов при добыче нефти). Пиролиз - это термический процесс расщепления углеводородов. В образовавшейся смеси газов интересующего нас этилена до 30%, примерно 30% метана и около 15% водорода. Проводят пиролиз в трубчатых печах, обычно в смеси с водяным паром.

Следующая и, пожалуй, самая трудная задача - разделение газов пиролиза и извлечение из смеси этилена в чистом виде. Эту операцию можно вести по-разному. Расскажем о применяемом на наших заводах синтеза спирта абсорбционно-ректификационном способе разделения газов. Сначала в колонне из пиролизных газов выделяются легкие газы - водород и метан. Для этого в колонну сверху специальные герметичные химически стойкие насосы подают абсорбент - жидкость, поглощающую все газы, кроме этих двух. В колонне из абсорбента отгоняют этан и этилен, в следующей колонне смесь этих продуктов разделяют и получают целевой продукт - этилен. В следующей колонне из абсорбента отгоняют пропан и пропилен, и очищенный абсорбент возвращают вновь в первую колонну.

Теперь очередь основной операции - гидратации этилена. Если посмотреть на схему реакции, то задача кажется элементарно простой: нужно лишь соединить молекулу этилена с молекулой воды и получить молекулу спирта. Но чтобы осуществить эту реакцию технологически, необходимо выполнить ряд условий. Первое: этилен нужен достаточно чистый, а концентрация его должна быть не ниже 99%. Второе: нужен эффективный катализатор, например фосфорная кислота, нанесенная на силикагель. Третье: давление в реакторе-гидрататоре должно быть около 80 атмосфер, и, значит, нужен мощный компрессор. Наконец, четвертое условие: реакция идет при температуре около 300°С, следовательно, воду нужно превратить в перегретый пар. В промышленных условиях это означает потребность в ТЭЦ. Но даже если выполнить все эти условия, то и тогда лишь 3-5% этилена вступает в реакцию с парами воды. Не прореагировавший этилен приходится вновь пропускать с парами воды через катализатор.

В заключение - одно предупреждение. Хотя можно получить синтетический этиловый спирт, практически не отличающийся от спирта из пищевого сырья, это не означает, что синтезспирт можно употреблять для приготовления винно-водочных изделий. Это, кстати, запрещено. Но ведь вовсе не для этой цели производят синтезспирт...

Этиловый спирт можно узнать по запаху. Впрочем, отличить его таким образом можно лишь от весьма далеких по структуре веществ. Что же касается соединений одной с ним группы, все сложнее. Но это и интереснее.

Состав и формула

Этанол - а именно так звучит одно из его официальных названий - относится к простым спиртам. Он знаком практически всем под теми или иными наименованиями. Часто его называют просто спиртом, иногда прибавляют прилагательные "этиловый" или "винный", химики могут также назвать его метилкарбинолом. Но суть одна - С 2 Н 5 ОН. Эта формула знакома, пожалуй, практически всем еще со школьных времен. И очень многие помнят, насколько это вещество подобно своему ближайшему родственнику - метанолу. Проблема лишь в том, что последний крайне токсичен. Но об этом позже, сначала стоит рассмотреть подробнее этанол.

Кстати, в химии есть много похожих терминов, так что не стоит путать этиловый спирт, например, с этиленом. Последний является бесцветным горючим газом и совсем не похож на прозрачную жидкость с характерным запахом. А еще есть газ этан, и его название тоже созвучно с наименованием "этанол". Но это тоже совсем разные вещества.

Метиловый и этиловый

Уже долгие годы остается актуальной проблема массовых отравлений в связи с невозжностью отличить в домашних условиях два спирта. Контрафактный алкоголь, подпольное или просто некачественное производство - все это повышает риск плохой очистки и пренебрежения технологическими условиями.

Все это усложняется тем, что по своим основным свойствам метиловый и этиловый спирты - практически идентичные вещества, и неспециалист без нужного оборудования просто не сможет отличить один от другого. При этом смертельная доза метанола - 30 граммов, тогда как в случае с обычным спиртом такой объем совершенно безопасен для взрослого человека. Именно поэтому, если нет уверенности в происхождении напитка, лучше его не употреблять.

Что любопытно, антидотом для технического спирта является как раз чистый метанол. Так что, заметив признаки острого отравления, необходимо ввести раствор последнего внутривенно или принять перорально. Важно при этом не перепутать состояние интоксикации метанолом с обычным сильным алкогольным опьянением или отравлением. В этом случае, а также при отравлении некоторыми другими веществами ни в коем случае нельзя принимать дополнительно спирт этиловый. Цена ошибки может быть очень высокой.

Физические и химические свойства

Этанолу присущи все общие характеристики и реакции спиртов. Он бесцветный, обладает характерными вкусом и запахом. В нормальных условиях он жидкий, переходит в твердую форму при температуре -114 о С, а кипит при +78 градусах. Плотность спирта этилового составляет 0,79. Хорошо смешивается с водой, глицерином, бензолом и многими другими веществами. Легко улетучивается, так что хранить его нужно в хорошо закрывающихся емкостях. Сам является прекрасным растворителем, а также обладает отличными антисептическими свойствами. Очень огнеопасен как в жидком, так и в парообразном состоянии.

Этанол является психоактивным и наркотическим веществом, входит в состав всех спиртных напитков. Смертельной дозой для взрослого человека является 300-400 миллилитров 96 % раствора спирта, употребленного в течение часа. Эта цифра довольно условна, поскольку зависит от большого количества факторов. Для детей достаточно уже 6-30 миллилитров. Так что этанол является и достаточно эффективным ядом. Тем не менее, он широко используется, поскольку обладает рядом уникальных свойств, делающих его универсальным.

Разновидности

Существует несколько видов этилового спирта, используемых для разных целей. В основном они отражают способы получения вещества, но часто говорят и о различных методах обработки.

Так, надпись на упаковке "Спирт этиловый ректификованный" говорит о том, что содержимое прошло специальную очистку от примесей. Полностью очистить, например, от воды его довольно сложно, но можно максимально уменьшить ее присутствие.

Еще спирт может быть денатурированным. В этом случае все наоборот: к этанолу добавляют трудноустранимые примеси, делающие его непригодным для употребления внутрь, но не усложняющие применение по основному назначению. Как правило, в роли денатурата выступает керосин, ацетон, метанол и т. д.

Кроме того, различают спирт этиловый медицинский, технический, пищевой. Для каждой из этих разновидностей существует строгий стандарт, предусматривающий определенные критерии. Но о них поговорим чуть позже.

Кроме всего прочего, на упаковке часто указывается процент содержания. Это актуально, опять же, в связи с тем, что этанол сложно полностью очистить от воды, да и обычно в этом нет серьезной необходимости.

Получение

Производство этилового спирта предусматривает использование одного из трех основных способов: микробиологического, синтетического или гидролизного. В первом случае имеем дело с процессом брожения, во втором, как правило, задействуются химические реакции с применением ацетилена или этилена, ну а третий говорит сам за себя. Каждый из способов имеет свои плюсы и минусы, сложности и преимущества.

Для начала расмотрим этиловый спирт, который производится только для пищевых целей. Для его производства используется только метод брожения. В ходе этого процесса виноградный сахар распадается на этанол и двуокись углерода. Этот метод известен с глубокой древности и является наиболее естественным. Но он требует и большего количества времени. Кроме того, полученное вещество не является чистым спиртом и требует достаточного большого количества операций по обработке и очистке.

Для получения технического этанола брожение нецелесообразно, так что производители прибегают к одному из двух вариантов. Первый из них - сернокислая гидратация этилена. Она выполняется в несколько этапов, но есть и более простой метод. Второй вариант - прямая гидратация этилена в присутствии фосфорной кислоты. Эта реакция обратима. Впрочем, оба этих способа также несовершенны, и полученное вещество требует дальнейшей обработки.

Гидролиз - относительно новый метод, позволяющий получать этиловый спирт из древесины. Для этого сырье измельчается и обрабатывается 2-5 % серной кислотой при температуре 100-170 градусов по Цельсию. Этот метод позволяет получать до 200 литров этанола из 1 тонны древесины. По разным причинам гидролизный способ не слишком популярен в Европе, в отличие от США, где открывают все новые и новые заводы, работающие по этому принципу.

Стандарты

Весь этанол, который производится на предприятиях, должен соответствовать определенным стандартам. Для каждого способа получения и обработки есть свой, в котором указываются основные характеристики, которыми должен обладать конечный продукт. Рассматривается очень много свойств, например, содержание примесей, плотность спирта этилового, предназначение. Для каждой разновидности есть свой стандарт.

Так, например, синтетический технический спирт этиловый - ГОСТ Р 51999-2002 - делится на два сорта: первый и высший. Очевидное различие между ними - объемная доля этанола, которая составляет 96 % и 96,2 % соответственно. В стандарте под этим номером указывается как ректификованный, так и денатурированный этиловый спирт, предназначенный для использования в парфюмерной промышленности.

Для более прозаичной цели - применения в качестве растворителя - существует свой ГОСТ: Р 52574-2006. Здесь речь идет только о денатурате с разной объемной долей этанола - 92,5 % и 99 %.

Что же касается такого вида, как пищевой этиловый спирт, то для него действует ГОСТ Р 51652-2000, и у него есть целых 6 сортов: первый (96 %), высшей очистки (96,2 %), "Базис" (96 %), "Экстра" (96,3 %), "Люкс" (96,3 %) и "Альфа" (96,3 %). Здесь уже речь идет в первую очередь о сырье и некоторых других сложных показателях. Например, продукт марки "Альфа" вырабатывается только из пшеницы, ржи или их смеси.

До сих пор многие проводят, так сказать, параллели между двумя понятиями: спирт этиловый - ГОСТ 18300-87, который был принят еще в СССР. Этот стандарт давно утратил силу, что, однако, не мешает строить производство в соответствии с ним до сих пор.

Использование

Пожалуй, затруднительно найти вещество, которое имеет столь же широкое применение. Этиловый спирт так или иначе используется в очень многих отраслях производства.

Прежде всего, это пищевая промышленность. Самые разные алкогольные напитки - от вин и ликеров до виски, водки и коньяка - соджержат в своем составе упомянутый спирт. Но сам по себе в чистом виде этанол не используется. Технология предусматривает закладку сырья, например, виноградного сока и инициацию процесса брожения, а на выходе получается уже готовый продукт.

Еще одна область широкого применения - это медицина. Этиловый спирт 95 % в данном случае используется чаще всего, ведь он обладает прекрасными антисептическими свойствами, а также растворяет многие вещества, что позволяет с его помощью делать эффективные настойки, микстуры и прочие препараты. Кроме того, при разных видах наружного применения он способен как эффективно согревать, так и охлаждать организм. Нанеся его на кожу, можно быстро сбить высокую температуру тела на градус-полтора. И наоборот, энергичные растирания помогут согреться. Кроме того, при хранении анатомических препаратов также используется спирт этиловый медицинский.

Разумеется, еще одна область применения - это техника, химия и все, что с этим связано. Речь идет о лакокрасочных покрытиях, растворителях, очистителях и пр. Кроме того, этанол используется в промышленном производстве многих веществ или является сырьем для них (диэтиловый эфир, тетраэтилсвинен, уксусная кислота, хлороформ, этилен, каучук и многие другие). Спирт этиловый технический, естественно, совершенно непригоден в пищу, даже если он очищен.

Разумеется, во всех этих случаях речь идет о совершенно разные разновидности, каждая из которых имеет свои особенности. Так, пищевой спирт этиловый ректификованный вряд ли будут использовать для технических целей, тем более, что он облагается акцизом, а значит, его стоимость гораздо выше по сравнению с неочищенным. Впрочем, о ценообразовании речь пойдет отдельно.

Применение в новых технологиях

Все чаще в последние годы говорят об использовании этанола в качестве топлива. Этот подход имеет своих противников и сторонников, особенно часто речь об этом заходит в США. Дело в том, что американские фермеры традиционно выращивают много кукурузы, которая теоретически может служить прекрасным сырьем для того, чтобы получить спирт этиловый. Цена такого топлива однозначно будет ниже стоимости бензина. Этот вариант снимает вопрос зависимости многих стран от поставок нефти и цен на энергоносители, ведь производство спирта может располагаться где угодно. Кроме того, это безопаснее с точки зрения экологии. Впрочем, уже сейчас можно заметить использование этанола в этом качестве, но в гораздо меньших масштабах. Это спиртовки - специальные химические нагреватели, домашние мини-камины, а также многие другие приборы.

Это может быть действительно перспективным направлением работы в поисках альтернативных, возобновляемых и достаточно дешевых источников энергии. Проблема для России здесь состоит в менталитете. Достаточно сказать, что спиртовые фонари в Москве продержались недолго - работники, которые занимались их работой, просто выпивали сырье. И даже если топливо будет содержать различные примеси, совсем избежать отравлений вряд ли удастся. Впрочем, для РФ есть и другие поводы не стремиться к таким изменениям, поскольку переход на такой вид энергии грозит для страны серьезным снижением объема экспорта энергоносителей.

Действие на человеческий организм

В классификации СанПин этанол относится к 4 классу, то есть малоопасным веществам. Сюда же, кстати, относятся керосин, аммиак, метан и некоторые другие элементы. Но это не значит, что не стоит относиться к алкоголю несерьезно.

Этиловый спирт при употреблении внутрьсерьезно влияет на центральную нервную систему всех животных. Он вызывает состояние, называемое алкогольным опьянением, характеризующееся неадекватным поведением, заторможенностью реакций, снижением восприимчивости к различного рода раздражителям и т. д. При этом все сосуды расширяются, увеличивается теплоотдача, учащается сердцебиение и дыхание. В состоянии небольшого опьянения ясно видно характерное возбуждение, при повышении дозы сменяющееся угнетением центральной нервной системы. Как правило, после этого появляется сонливость.

В более высоких дозах может наступить алкогольная интоксикация, серьезно отличающая от картины, описанной ранее. Дело в том, что этанол является наркотическим веществом, но не используется в этом качестве, поскольку для эффективного усыпления нужны дозы, крайне близкие к тем, при которым наступает паралич жизненно важных центров. Состояние алкогольной интоксикации - как раз та грань, когда без оказания экстренной помощи человек может умереть, поэтому так важно отличать это от опьянения. При этом наблюдается что-то вроде комы, дыхание редкое и пахнет спиртом, пульс учащенный, кожа бледная и влажная, температура тела понижена. Необходимо немедленно обратиться за медицинской помощью, а также попробовать промыть желудок.

Регулярное употребление этанола может вызвать пагубное пристрастие - алкоголизм. Оно характеризуется изменением и деградацией личности, также страдают различные системы органов, прежде всего это касается печени. Существует даже характерное для алкоголиков "со стажем" заболевание - цирроз. В некоторых случаях оно даже приводит к необходимости пересадки.

Что касается наружного применения, этиловый спирт раздражает кожу, одновременно являясь эффективным антисептиком. Он также уплотняет эпидермис, поэтому его используют для обработки пролежней и других повреждений.

Реализация и ее особенности

Стандарты - это не единственное, с чем имеют дело те, кто производят спирт этиловый. Цена на разные сорта, марки и разновидности очень разнится. И это неспроста, ведь то, что предназначего для употребления в пищу - подакцизный товар. Обложение этим дополнительным налогом делает стоимость соответствующего ректификата заметно выше. Это позволяет в известной степени контролировать оборот спирта этилового в продаже, а также стоимость алкогольной продукции.

Кстати, это еще и вещество, подлежащее строгому учету. Поскольку этанол используется при производстве лекарств, медицинских манипуляциях и т. д., он в той или иной форме хранится в аптеках, больницах, поликлиниках и прочих учреждениях. Впрочем, это не означает, что устроившись на работу по соответствующей специальности, можно легко и незаметно получить в пользование хоть какое-то количество вещества. Учет этилового спирта производится с помощью специального журнала, а нарушение процедур является административным правонарушением и наказывается штрафом. Что пропажу заметят в самые короткие сроки.

Все рассмотренные способы получения этилового спирта являются аналитическими, так как они основаны на разложении более сложных веществ, т. е. на спиртовом брожении гексоз. В настоящее время широко используют и синтетический способ получения этилового спирта, исходя из более простых веществ, например этилена C 2 H 4 .

В 1872 г. А.М. Бутлеров совместно с В. Горяйновым впервые получили синтетический этиловый спирт, поглощая этилен серной кислотой, а затем действуя на образовавшееся соединение водой.

Сырьем для производства синтетического этилового спирта служат газы нефтеперерабатывающих заводов, которые содержат этилен. Кроме того, можно использовать и другие этиленсодержащие газы: коксовый газ, получаемый при коксовании угля, и попутные нефтяные газы.

В настоящее время синтетический этиловый спирт получают двумя способами: сернокислотной гидратацией и прямой гидратацией этилена.

Сернокислая гидратация этилена. Производство этилового спирта этим способом состоит из следующих процессов: взаимодействия этилена с серной кислотой, при котором образуются этилсерная кислота и диэтилсульфат; гидролиз полученных продуктов с образованием спирта; отделение спирта от серной кислоты и очистка его.

Сырьем для сернокислой гидратации служат газы, содержащие 47-50% вес. этилена, а также газы с меньшим содержанием этилена. Процесс осуществляется по схеме, приведенной ниже.

Этилен взаимодействует с серной кислотой в реакционной колонне, представляющей собой вертикальный цилиндр. Внутри колонны находятся колпачковые тарелки с переливными стаканами. В нижнюю часть колонны компрессором подают этиленосодержащий газ, сверху в колонну подводят для орошения 97-98%-ная серная кислота. Газ, поднимаясь вверх, на каждой тарелке барботирует через слой жидкости. Этилен с серной кислотой взаимодействует по реакциям:

Из реакционной колонны непрерывно вытекает смесь этилсер- ной кислоты, диэтилсульфата и непрореагировавшей серной кислоты. Эту смесь охлаждают в холодильнике до 50°С и направляют на гидролиз, при котором протекают такие реакции:

C 2 H 5 HSO 4 + H 2 O = C 2 H 5 OH + H 2 SO 4

(C 2 H 5) 2 SO 4 + H 2 O = C 2 H 5 HSO 4 + C 2 H 5 OH

Моноэтилсульфат, полученный в результате второй реакции, подвергают дальнейшему разложению с образованием еще одной молекулы спирта.

Прямая гидратация этилена. Технологическая схема производства этилового спирта способом прямой гидратации этилена представлена ниже.



Сырьем для способа прямой гидратации служит газ с высоким содержанием этилена (94-96%). Этилен сжимают компрессором до 8-9 КПа. Сжатый этилен смешивают с водяным паром в определённых соотношениях. Взаимодействие этилена с водяным паром производят в контактном аппарате - гидрататоре, представляющим собой вертикальную стальную полую цилиндрическую колонну, в которой находится катализатор (фосфорная кислота, нанесенная на алюмосиликат).

Смесь этилена и водяного пара при 280-300°С под давлением около 8,0 КПа подают в гидрататор, в котором поддерживают такие же параметры. При взаимодействии этилена с водяным паром, кроме основной реакции образования этилового спирта, протекают побочные реакции, в результате которых получаются диэтиловый эфир, уксусный альдегид и продукты полимеризации этилена. Продукты синтеза уносят из гидрататора небольшое количество фосфорной кислоты, которая может в дальнейшем оказывать коррозийное действие на аппаратуру и трубопроводы. Чтобы избежать этого, кислоту, содержащуюся в продуктах синтеза, нейтрализуют щелочью. Продукты синтеза после нейтрализации пропускают через солеотделитель, а затем охлаждают в теплообменнике и производят конденсацию водно-спиртовых паров. Получают смесь водно-спиртовой жидкости и непрореагировавшего этилена. Непрореагировавший этилен отделяют от жидкости в сепараторе. Он представляет собой вертикальный цилиндр, в котором установлены перегородки, резко изменяющие скорость и направление газового потока. Этилен из сепаратора отводят во всасывающую линию циркуляционного компрессора и направляют на смешение со свежим этиленом. Водноспиртовой раствор, вытекающий из сепаратора, содержит 18,5-19% об. спирта. Его концентрируют в отпарной колонне и в виде паров направляют для очистки в ректификационную колонну. Спирт получают крепостью 90,5% об. На заводах синтетического спирта применяется способ прямой гидратации этилена.



Производство синтетического спирта, независимо от способа его получения, значительно более эффективно, чем производство спирта из пищевого сырья. Для получения 1 тэтилового спирта из картофеля или зерна необходимо затратить 160-200 чел-дней, из газов нефтепереработки только 10 чел-дней. Себестоимость синтетического спирта примерно в четыре раза меньше себестоимости спирта из пищевого сырья.

Литература

1. Иванов А.И. Оборудование спиртового производства. М.: Пищевая промышленность, 1972. - 216 с.

2. Климовский Д.H., Смирнов В.А., Стабников В.Н. Технология спирта. - М.: Пищевая промышлнность, 1967. - С. 278-300.

3. Слонимер Б.М. Монтаж предприятий пищевой промышленности. Краткое справочное пособие. - М.: Машгиз, 1960. - С. 275-278.

4. Фертман Г.И., Шойхет М.И., Чепелева А.С. Технология бродильных производств. - М.: Высшая школа, 1966. - С. 93 -112.

5. Фертман Г.И., Шойхет М.И. Технология спиртового и ликероводочного производства. - М.: Пищевая промышленность, 1973. - С. 6 -218.

6. Халаим А.Ф. Технология спирта. - М.: Пищевая промышленность, 1972. - С. 107-113.


ПРОИЗВОДСТВО ПИВА

Пиво - старинный народный напиток, содержащий небольшое количество алкоголя и обладающий характерным хмелевым ароматом. Вследствие насыщения углекислотой пиво хорошо утоляет жажду. В пиве содержится много ценных питательных веществ и витаминов.

Все сорта пива содержат от 1,8 до 7,0% об. спирта и от 0,3 до 0,5% углекислоты.

Экстрактивные несброженные вещества пива состоят из сахаров, белков, аминокислот и других органических веществ, минеральных солей и небольшого количества витаминов. Они придают пиву полноту вкуса.

Сырьем для приготовления пива служат: сухой ячменный солод и несоложенные материалы (ячменная мука, обезжиренная кукурузная мука и рисовая сечка), добавляемые при производстве некоторых сортов пива; хмель, вода. Применяют также сахар, глюкозу и другие сахаросодержащие продукты. Количество несоложенного сырья и сахаросодержащих продуктов может составлять до 50% от массы зерноприпасов, идущих на приготовление затора.

Своеобразное сочетание в пиве хмелевой горечи, специфического аромата и насыщенности растворенной углекислоты при небольшом содержании алкоголя обуславливает широкое распространение этого напитка и его популярность.

Технологическая схема производства пива из солода (рис.6.1) состоит из нескольких этапов: приготовление охмеленного пивного сусла; сбраживание его специальными расами дрожжей; длительная выдержка зеленого пива при низких плюсовых температурах для осветления и созревания; фильтрация и розлив готового пива; пастеризация пива.

Все эти процессы очень сложны, взаимосвязаны и нарушение технологических режимов на любой стадии неизбежно отражается на качестве готового пива.

На первом этапе приготовления пивного охмеленного сусла важно наилучшим образом использовать экстрактивные вещества солода, добиться максимального перевода их в раствор - главным образом крахмала, значительной части белков и продуктов их распада, являющихся основой для создания готового пива.

Последующие этапы производства пива также играют большую роль в его производстве. Это сбраживание охмеленного сусла, осветление его, стадии фильтрации и розлива.

Приготовление пивного сусла

Процесс приготовления пивного сусла состоит из очистки и дробления ячменного солода, приготовления затора, фильтрации затора и кипячения сусла с хмелем.

Очистка и дробление солода

Готовый солод хранится длительное время. При хранении и транспортировке солод может загрязняться различными примесями (пыль, песок, металлические предметы), на его поверхности могут быть остатки ростков, приставшие кусочки мякины и др. Эти примеси снижают выход экстракта, ухудшают качество пива, а металлические частицы могут повредить вальцы солододробилки. Солод очищают на полировочной машине и магнитном аппарате.

Полировочная машина состоит из вибрирующих сит, щеточного барабана, волнистой деки и центробежного вентилятора. На ситах задерживаются примеси солода, а при помощи щеточного барабана и волнистой деки очищается и полируется поверхность солода. При выходе из полировочной машины солод попадает в струю воздуха, создаваемую вентилятором, и освобождается от остатков пыли. После полировки солод приобретает чистый вкус, хороший внешний вид, его натура несколько повышается, а выход экстракта в варочном цехе увеличивается. Количество отходов при очистке на полировочной машине составляет 0,1-1% и зависит от степени загрязнения солода и работы машины. Перед дроблением солод очищают от случайных механических примесей, которые могут вызвать порчу вальцов, искрение, взрыв и загорание пыли.

Дробление солода. Солод дробят с целью улучшения растворения и ферментативного разложения содержимого в нем в процессе затирания. Качество дробления влияет на технологический процесс приготовления сусла и выход экстракта. При очень тонком дроблении частицы солода доступны ферментативному воздействию, процесс разложения белков и крахмала происходит быстрее. Однако мелкие частицы помола, обладая большой поглотительной способностью, удерживают много экстракта, а дробина в фильтрационном чане слеживается плотным слоем. Это затрудняет и замедляет процесс фильтрации затора и выщелачивания дробины, приводит к повышенному расходу воды. Следовательно, при фильтрации затора в фильтрационном чане очень тонкий помол может снизить производительность варочного цеха и увеличить потери экстракта с дробиной.

При фильтрации затора на фильтр-прессе эти факторы не влияют на ее скорость, так как последняя производится под давлением.

При крупном помоле затор фильтруется хорошо, но увеличиваются потери экстракта из-за плохого доступа ферментов к веществам, находящимся внутри частиц помола. Поэтому дробление нужно регулировать так, чтобы оболочка, которая служит фильтрующим материалом при фильтровании затора в фильтрационном чане, не сильно измельчалась, а мучнистое тело дробилось в муку и крупку. Средний помол (%): шелуха - 20, грубая и мелкая крупка - 50-55, мука 25-30.

При работе с фильтр-прессом содержание муки в дробленном солоде можно повысить до 45%. Дробление солода производится на вальцовых дробилках (двух-, трех-, четырех- и шестивальцовых).

Приготовление затора. Приготовление затора - это не только смешивание дробленного солода с водой, но и разложение составных частей солода при помощи ферментов.

Процесс приготовления затора обеспечивает:

1) разложение составных частей солода при помощи ферментов и перевод их в более простые растворимые (экстрактивные) вещества;

2) разложение при помощи ферментов составных частей несоложенных материалов, которые добавляют к солоду при приготовлении некоторых сортов пива;

3) получение максимального выхода экстракта из сухого солода и несоложенных материалов;

4) определенный состав экстракта, необходимый для получения различных сортов пива.

На стадии затирания ферментативный гидролиз протекает значительно быстрее, чем при выращивании солода. Основные ферментативные процессы при затирании и осахаривании: ферментативный гидролиз крахмала и ферментативный гидролиз белков.

Кроме ферментативных, при затирании протекают и неферментативные процессы, которые также влияют на качество и состав сусла.

Ферментативный гидролиз крахмала. Ферментативный гидролиз крахмала - процесс сложный. Он происходит под действием амилолитических ферментов, которые могут действовать на клейстеризованный и неклейстеризованный крахмал. Последний осахаривается очень медленно. Температура клейстеризации ячменного крахмала 60-80°С. Образовавшийся крахмальный клейстер под действием амилаз вначале превращается в растворимый крахмал, а затем в мальтозу и декстрины (амилодекстрины, эритродекстрины, ахроодекстрины, мальтодекстрины). Под действием амилазы амило- и эритродекстрины расщепляются и в заторе остаются ахроо- и мальтодекстрины. Присутствие в сусле этих декстринов придает пиву вкус и вязкость. Дрожжами декстрины не сбраживаются. Мальтоза легко и быстро сбраживается дрожжами. В результате осахаривания крахмала в заторе образуется сбраживаемый углевод-мальтоза и несбраживаемые углеводы - декстрины. Соотношение сбраживаемых и несбраживаемых углеводов (отношение сахара к несахару) является одним из показателей качества сусла. Это соотношение должно быть определенным для каждого сорта пива. Отношение сахара к несахару в сусле колеблется в таких пределах: для жигулевского пива 1: 0,33 -1: 0,43; для рижского и московского пива 1: 0,22-1: 0,33; для темных сортов пива 1:0,43 -1:0,54. Скорость ферментативного гидролиза крахмала и соотношение продуктов гидролиза зависит от температуры, кислотности и концентрации затора.

Оптимальная температурная зона для β-амилазы солода 45-51 °С, а для α-амилазы 51-60°С. Если осахаривание вести при оптимальной температуре, то в заторе образуется большое количество мальтозы, с повышением температуры количество образующегося сахара уменьшается, а количество несахара увеличивается.

Оптимальная pH для солодовой амилазы лежит около 4,7-5,1. Некоторые вещества, содержащиеся в заторе (пептоны, соли кальция, клейстеризо- ванный крахмал), оказывают защитное влияние на амилазу, поэтому оптимальная зона ее действия может сдвигаться. Например, оптимальная зона pH для α- и β-амилазы сдвигается с 4,7-5,1 до 5,5-5,8.

С повышением концентрации затора увеличивается его вязкость, затрудняются процессы диффузии между ферментами и молекулами крахмала, затрудняется и замедляется гидролиз крахмала. Поэтому при затирании соблюдают необходимое соотношение солода и воды.

Процесс осахаривания контролируется йодной пробой. Если капля затора после смешивания с каплей йода не дает синего или красно-бурого окрашивания, осахаривание считается законченным.

Ферментативный гидролиз белков. Вторым важным биохимическим процессом при затирании является гидролиз белковых веществ. Разлагаются белки под действием протеолитических ферментов. При этом образуются растворимые белки, пептиды и аминокислоты.

Продукты распада белков играют большую роль в пивоваренном производстве. Они влияют на цвет и вкус пива, способствуют лучшему образованию пены и ее стойкости. Простейшие продукты распада - аминокислоты - нужны для питания дрожжей.

Оптимальная температура для накопления в сусле общего азота 50-52°С, а для азота аминокислот 45-50°С. Поэтому распад белков для солода хорошего и среднего качества проводят при 50-52°С. Выдержку затора для расщепления белков называют белковой паузой. Длительность белковой паузы зависит от степени растворения солода и обычно продолжается 10-30 мин.

Для протеолитических ферментов оптимальное значение pH 5-5,2. Пивоваренный солод имеет небольшую естественную кислотность, которая позволяет получить заторы с pH 5,8-6,0. Чтобы создать более благоприятные условия для разложения белков и для других ферментативных процессов, затор иногда подкисляют молочной кислотой.

На качество пива, особенно на пенообразование и пеностойкость, влияет соотношение продуктов распада белков. Это соотношение регулируется температурой и длительностью белковой паузы. Кроме продуктов распада крахмала и белков, при затирании переходят в раствор пентозаны, гуммиобразные вещества солода, красящие вещества, которые большой роли в пивоварении не играют, но влияют на вкус и пеностойкость пива. При кипячении части затора (отварки) образуются меланоидины и карамели, в результате чего усиливается окраска сусла.

Влияние состава воды на ферментативные процессы при затирании. Химический состав воды значительно влияет на ферментативные процессы при затирании. Особенно большое действие оказывают карбонаты и бикарбонаты воды. При оценке качества воды, идущей на затирание, учитывают не общее количество солей, обуславливающих жесткость, а только то количество карбонатов, которое осталось после компенсирующего действия сульфатов и других солей сильных кислот. Эти карбонаты обуславливают так называемую остаточную щелочность воды. По остаточной щелочности и судят о пригодности воды для того или иного сорта пива. Если остаточная щелочность положительна, то это значит, что вода снижает кислотность затора, а если отрицательна, то вода повышает кислотность затора. При остаточной щелочности 5° умягчение воды не производят, при более высокой остаточной щелочности воду исправляют. Наиболее распространенные способы умягчения воды на пивоваренных заводах: кипячение, прибавление извести, прибавление гипса, подкисление молочной кислотой, катионирование. Кипячением устраняется временная жесткость. Химическая обработка воды позволяет устранить постоянную жесткость.

Способы затирания. Затиранием называется процесс смешивания дробленного солода с водой. Полученная при этом смесь называется затором. Количество одновременно затираемых зерноприпасов называется засыпью. Количество воды необходимое для затирания, называется главным наливом. Кроме затирания, вода также расходуется для промывания дробины. Количество воды на главный налив составляет примерно 1/3, а количество воды на выщелачивание дробины – 2/3 от общего объема воды, расходуемого на приготовление сусла. Обычно на главный налив расходуется трех- или четырехкратное количество воды от массы затираемых зерноприпасов.

Суслом называется жидкость, полученная после фильтрации и промывания дробины. Сусло, полученное после фильтрации затора, называется суслом первым. После промывания дробины получаются промывные воды, которые смешиваются с первым суслом в сусловарочном котле.

Основными аппаратами для приготовления затора служат заторный чан и заторный котел (рис. 6.2), они представляет собой цилиндрический аппарат со сферическим или плоским дном и сферической крышкой. Котел отличается отсутствием предзаторника. Внутри чана размещена мешалка для размешивания массы во время затирания и при перекачках. На крышке чана укреплен предзаторник, в котором поступающий на затирание солод предварительно смешивается с водой. В центре крышки чана находится вытяжная труба для отвода паров.

Сусловарочный котел (рис. 6.3) используется для кипячения сусла с хмелем и представляет собой цилиндрический аппарат со сферическим двойным дном, образующим паровую рубашку. Внутри котла находится мешалка для размешивания затора. В центре крышки расположена вытяжная труба с кольцевым желобком для отвода конденсата. Снаружи стенки и днище котла имеют тепловую изоляцию. В сусловарочном котле сусло должно кипеть и выпариваться с такой интенсивностью, чтобы за 1 ч выпаривалось 8-12% общего объема. Для этой цели котлы имеют большую поверхность нагрева и испарения и часто снабжаются специальными трубчатыми нагревателями перколяторами.

009/

В состав оборудования варочного отделения входит фильтрационный чан, который служит для фильтрации затора, т.е. отделения дробины от солодового сусла (рис. 6.4). Фильтрованное сусло отводится от чана по сусловым трубам в фильтрационную батарею, снабженную приемником для сусла. На каждой сусловой трубе установлен кран с сифоном для регулирования скорости оттока сусла.

Приемник для сусла также соединен трубой с сусловарочным котлом, куда спускается отфильтрованное сусло, и с насосом для возврата мутного сусла в фильтрационный чан. Фильтрационный чан оборудован люками для удаления дробины, промывным аппаратом для выщелачивания дробины, который используется также и для выгрузки дробины из чана.

Способы приготовления затора делятся на настойные и отварные. Настойный способ заключается в том, что солод затирают с водой при определенной температуре, а затем температуру медленно поднимают до полного осахаривания крахмала. При этом способе затирание солода с водой производят при 45-50°С. При этой температуре затор выдерживают 2 ч для гидролиза белков. Затем затор нагревают до 62-63°С и выдерживают 30-45 мин для накопления мальтозы.

После этого температуру повышают до 70°С, и при этой температуре оставляют затор до полного осахаривания, которое продолжается 20-30 мин. Полноту осахаривания проверяют йодной пробой. Осахаренный затор нагревают до 75°С и при этой температуре перекачивают в фильтрационный чан.

Отварочные способы состоят в том, что после смешивания солода с водой затор по частям отбирают в заторный котел, где его подогревают, осахаривают, кипятят, а затем смешивают с остальным затором. После смешивания с каждой отваркой температура затора скачкообразно повышается.

В зависимости от количества отварок отличают одноотварочный, двухотварочный и трехотварочный способы затирания.

Трехотварочный способ затирания. Затирание начинают при 35-37°С. После смешивания дробленого солода с водой отбирают в заторный котел 1/3 часть затора (густую часть). Отварку медленно нагревают до температуры осахаривания, осахаривают 15 мин, нагревают до кипения, кипятят и возвращают в заторный чан. При этом температура в заторном чане поднимается до 63-65° С. После кипячения первой отварки ее перекачивают в заторный чан, где температура всего затора поднимается до 50-52° С. Затем из заторного чана снова отбирают 1/3 часть (густую) затора на вторую отварку. Отварку медленно нагревают до температуры осахаривания, осахаривают 15 мин, нагревают до кипения, кипятят и возвращают в заторный чан. При этом температура в заторном чане поднимается до 63-65°С.

Третья отварка - жидкая, так как требуется не только поднять температуру затора, но и разрушить ферменты. В заторе ферментативный распад в основном закончен, необходимо закрепить полученное соотношение между отдельными частями затора, а для этого ферменты нужно инактивировать. Жидкую отварку в заторном котле быстро доводят до кипения, кипятят 10-20 мин и перекачивают в заторный чан. Температура при этом поднимется до 75°С, и весь затор перекачивают на фильтрацию. Трехотварочный способ применяется в основном для приготовления темного пива и при переработке плохо растворенного солода.

Двухотварочный способ затирания. В заторном чане смешивают дробленый солод с водой, имеющей температуру 54-55°С. После этого весь затор оставляют при 50°С на 15-30 мин для разложения белков. Затем 1/3 затора (густую часть) отбирают в заторный котел, где подогревают до 63-67°С и производят мальтозную паузу. После мальтозной выдержки температуру в заторном котле поднимают до 100°С, кипятят отварку 15-30 мин и перекачивают обратно в заторный чан. После смешивания с отваркой температура в заторном чане поднимается до 63-65°С. Затор оставляют на 15 мин для осахаривания, после чего отбирают снова V 3 его в заторный котел (вторая отварка). Температуру в заторном котле поднимают до 70°С. При этой температуре осахаривают вторую отварку (20 мин), затем быстро нагревают до кипения, кипятят 15-20 мин и обратно перекачивают в заторный чан. Температура всего затора поднимается до 75°С. При этой температуре затор осахаривают 15-20 мин и после проверки полноты осахаривания перекачивают на фильтрацию.

Двухотварочный способ затирания является более рациональным. Он имеет много вариантов и может применяться при переработке солода различного качества.

Продолжительность процесса составляет примерно 4,5 ч, в том числе работа мешалки заторного чана - 1,5 ч, а заторного котла - 2 ч.

Одноотварочный способ затирания. Для затирания берут воду при 53-54°С с таким расчетом, чтобы после добавления солода температура затора была 48-50°С. В заторный чан набирают примерно половину воды, предназначенной на главный налив, пускают мешалку и спускают из бункера дробленный солод. Последний должен поступать в заторный чан через предзаторник или через трубу, доходящую почти до дна чана. Одновременно добавляют остальную часть воды. После тщательного перемешивания солода с водой 1/3 часть затора (густую часть) спускают в заторный котел на отварку. Чтобы усилить белковый распад, весь затор выдерживают в заторном чане при 50°С 15-30 мин (белковая выдержка) и только после этого спускают отварку в заторный котел. В заторном котле температуру постепенно повышают до 70°С, отварку осахаривают, затем подогревают до кипения, кипятят 20-30 мин и перекачивают в заторный чан, где смешивают с основным затором. После смешивания с отваркой температура в заторном чане поднимается до 70°С. При этой температуре затор осахаривают и проверяют полноту осахаривания йодной пробой. Если заторный чан имеет обогрев, тогда весь затор подогревают до 75°С и при этой температуре перекачивают на фильтрацию. Если же заторный чан обогрева не имеет, тогда в заторный котел отбирают большую часть затора, нагревают ее до кипения и возвращают в заторный чан для поднятия температуры до 75°С. Если заторный котел может вместить всю массу, тогда затор спускают в котел, нагревают до 75-77°С и перекачивают на фильтрацию.

Одноотварочный способ затирания дает положительные результаты при работе с хорошо растворенным солодом, который имеет также высокую осахаривающую способность. Этот способ чаще всего применяется на заводах, где установлен двухпосудный варочный агрегат.

Применение несоложенных материалов при затирании. При приготовлении некоторых сортов пива часть солода заменяют несоложенными материалами. Так, при варке жигулевского пива до 15% солода заменяют ячменной мукой или обезжиренной кукурузной мукой. При изготовлении московского пива применяется рисовая сечка в количестве 20% от расходуемых зерноприпасов, при варке ленинградского пива 10% солода заменяют рисовой сечкой. Перерабатывать несоложенные материалы значительно труднее, чем солод, так как они почти не содержат ферментов, а мучнистое тело не растворено. Поэтому их предварительно обрабатывают ферментами солода с последующим кипячением и только после этого смешивают с затором, приготовленным из солода.

В заторном котле затирают все несоложенное сырье среднего помола и 25% солода с трехкратным содержанием воды (35-45°С). При медленном перемешивании затор выдерживают 15-20 мин, затем температуру поднимают до 52°С. От всего затора отбирают V 3 часть в заторный котел на отварку, подогревают до 70-72°С и осахаривают 15- 20 мин. Затем отварку нагревают до температуры кипения, кипятят 20 мин и медленно перекачивают в заторный чан. При этом температура затора поднимается до 75°С, его выдерживают при этой температуре до исчезновения реакции на йод и перекачивают на фильтрацию. По этому режиму ведут затирание при замене 15% солода.

Разработан способ для замены до 50% солода несоложенными материалами, при котором используется для ферментации препарат плесневого гриба Aspergillus oryzae (Е.Я. Калашников и Д.Б. Лившиц).

Для приготовления затора берут 50% солода обычного дробления, и около 1% ферментного препарата (от массы всего сырья). Важно правильно измельчить ячмень. Состав частей помола при работе с фильтрационным чаном (%): шелухи - 12-22, грубой крупки - 20-40, мелкой крупки - 25-50, муки -12-20. Кроме ячменя применяют обезжиренную кукурузу, пшеницу и просо. Количество кукурузы и пшеницы не должно превышать 30-40%, а проса -15-20%. Остальное недостающее до 50% сырье должно восполняться ячменем.

Приготовление затора для жигулевского пива, согласно инструкции УкрНИИПП, производят в две стадии.

Первая стадия. Затирание несоложенной части сырья производится в заторном котле, в который набирают четырехкратное количество воды к массе несоложенного сырья, температура воды - 42-45°С. При работающей мешалке в воду засыпают 1/4 часть ферментного препарата и 10% солода, а затем все количество несоложенного ячменя.

Немедленно после затирания в заторный котел добавляют молочную кислоту до pH затора 5,5-5,7. Для этого требуется 0,2% молочной кислоты в пересчете на 100%-ную от массы всей засыпи (солод и ячмень). Затем температуру медленно (1 град/мин) повышают до 52°С, при этой температуре выдерживают 20 мин, после чего подогревают до 70°С (1 град/мин). После выдержки 15 мин при 70°С затор кипятят интенсивно 30 мин при постоянном перемешивании. На этом заканчивается первая стадия затирания.

Вторая стадия затирания. За 1-2 ч до окончания первой стадии в заторном чане при 30°С затирают остальную часть солода и ферментного препарата с четырехкратным количеством воды. По окончании кипячения несоложенной части затора ее соединяют с солодовой медленной перекачкой в заторный чан с таким расчетом, чтобы окончательная температура объединенного затора была 62-63°С. После перекачки весь затор спускают в заторный котел и начинают вторую стадию.

Затирание ведут по методу с одной отваркой. Затор при 62- 63°С выдерживают 20-30 мин, затем нагревают до 71-73°С. при этой температуре происходит полное осахаривание, на что требуется не более 30-40 мин. После осахаривания жидкую часть затора перекачивают в заторный чан. Температура всего затора при этом должна быть 75- 76°С. После 5-10 мин выдержки при этой температуре и проверки полноты осахаривания затор подогревают до 77-78°С и направляют на фильтрацию. Применение повышенного количества несоложенного сырья и ферментного препарата в пивоварении позволяет уменьшить потери углеводов при солодоращении, уменьшить затраты труда на приготовление солода, увеличить выпуск пива без расширения площади солодовни.

Фильтрация затора

Готовый осахаренный затор поступает на фильтрацию, где разделяется на жидкую часть - сусло и густую часть - дробину. Процесс фильтрации затора проходит в две стадии: фильтрация первого сусла и промывание дробины. В фильтрационном чане фильтрующим слоем служит дробина, осевшая на ситчатом дне чана. На фильтр-прессе фильтруют через плотную хлопчатобумажную ткань. Скорость прохождения сусла через фильтрующий слой дробины зависит от структуры осадка, качества и степени дробления солода, вязкости сусла, давления и температуры.

Слой дробины по своей структуре неоднородный. В состав густой массы входят частицы различной величины и плотности: крупные и мелкие кусочки шелухи, различные по величине остатки раздробленного зародыша и эндосперма, грубодисперсные и мелкодисперсные коллоидные частицы, скоагулировавшие белки. После отстаивания осадок располагается слоями в зависимости от плотности частиц. В первую очередь оседает шелуха, затем - более легкие частицы дробины, хлопья скоагулированных белков и мелкодисперсные частицы. Весь слой пропитан суслом и находится в набухшем, рыхлом состоянии. В слое при формировании образуется большое количество мелких извилистых капиллярных ходов, по которым стекает сусло. Вначале слой очень рыхлый, поэтому из фильтрационного чана стекает мутное сусло. После уплотнения слоя начинает вытекать светлое сусло. Толщина слоя дробины составляет 30-40 см. Для снижения вязкости температура затора, который направляется на фильтрацию, должна быть высокой. С повышением температуры вязкость сусла уменьшается. При температуре выше 75-78°С амилаза инактивирует, а крахмал, который не перешел в раствор после недостаточного осахаривания, клейстеризуется. Это вызывает помутнение пива. Иногда для ускорения фильтрации ее проводят при 95-100°С. В этом случае в сусловарочный котел к профильтрованному суслу добавляют 1-2% вытяжки от следующего затора и создают условия для дополнительного осахаривания.

Скорость фильтрации зависит также от давления. В фильтрационных чанах фильтрация идет при атмосферном давлении. Если давление в чане повысить, можно значительно увеличить скорость фильтрации, но для этого нужно фильтрационный чан герметизировать и создать в нем давление с помощью сжатого воздуха. В фильтр-пресс затор подается насосом под давлением.

Фильтрация затора в фильтрационном чане. Фильтрационный чан (рис. 6.4) представляет собой цилиндрический аппарат с плоским дном и сферической крышкой. На расстоянии 10-12 мм от основного дна установлено второе, ситчатое дно. От нижнего дна отходит ряд труб, по которым отводится сусло. Все отводные трубы подводятся к общему сборнику и заканчиваются кранами, образующими фильтрационную батарею. Внутри чана размещены промывной аппарат и рыхлитель, которые служат для лучшего промывания дробины. Чтобы избежать охлаждения затора при фильтрации, боковые стенки чана покрывают слоем изоляции.

Фильтрация затора состоит из двух основных операций: фильтрация первого сусла и промывание дробины водой. Прежде чем приступить к фильтрации затора, подготовляют заторный чан. Для этого его моют, укладывают плотно сита и заполняют подситовое пространство водой при 75-78°С для вытеснения воздуха и создания сплошного слоя жидкости под ситчатым дном. Вода должна покрыть ситчатое дно на 1 см. После этого весь затор перекачивают в фильтрационный чан и выдерживают 20-30 мин для того, чтобы осела дробина. Над осадком образуется слой прозрачного сусла.

При правильно проведенном затирании и нормальном отстаивании это сусло кажется черным. Когда дробина хорошо осядет, спускают мутное сусло. Для этого краны поочередно быстро открывают и закрывают. В подситовом пространстве создается вихревое движение жидкости, благодаря чему в трубы увлекается муть из подситового пространства и нижнего слоя дробины. Воду и мутное сусло перекачивают насосом обратно в фильтрационный чан. После этого начинают фильтрацию первого сусла, которое самотеком поступает в сусловарочный котел. Плотность первого сусла 16-18% (по сахарометру).

Температура затора во время фильтрации 75-78°С. Фильтрация первого сусла продолжается 1,5-2 ч. Чтобы извлечь остаток экстракта из дробины, ее промывают горячей водой (75-78°С). Для лучшего вымывания экстракта дробину разрыхляют (рыхлителем или вручную). Промывные воды поступают также в сусловарочный котел. Промывание дробины осуществляют непрерывно или периодически. При непрерывном промывании воду подают непрерывно, поддерживая уровень так, чтобы вода покрывала дробину на 1-2 см. Периодическое выщелачивание проводят путем залива водой фильтрационного чана с перемешиванием дробины и фильтрования. Эту операцию проводят несколько раз до тех пор, пока плотность промывных вод не будет 0,5% (по сахарометру). При дальнейшем выщелачивании вымываются вещества, входящие в состав шелухи и придающие пиву неприятный горький привкус. После спуска промывной воды дробину из фильтрационного чана выгружают в бункер, а чан тщательно моют. Один раз в месяц сита механически чистят или обрабатывают 10%-ным раствором каустической соды, а затем моют.

Продолжительность операций при фильтрации затора в фильтрационном чане 6 ч. Завод, производящий фильтрацию затора в фильтрационном чане, может приготовить 3,5-4 затора в сутки.

Фильтрация затора на фильтр-прессе. Заторный фильтрпресс состоит из чугунных рам и сплошных плит, имеющих рифленую поверхность. Рамы и плиты располагаются поочередно на двух параллельных стержнях станины. На плиты натягивается хлопчатобумажная ткань, которая является фильтрующей поверхностью. В верхней части каждой рамы имеется прилив с круглым отверстием, которое сообщено прорезью с внутренним пространством рамы. После сборки фильтрпресса отверстия р

Loading...Loading...